Пользовательского поиска

Выше мы совершили незаметный терминологический переход от понятия СП к “марковской цепи”. Теперь эту неясность следует устранить. Отметим, во-первых, что случайный процесс с дискретными состояниями и временем называется случайной последовательностью.

Если случайная последовательность обладает марковским свойством, то она называется цепью Маркова.

С другой стороны, если в случайном процессе состояния дискретны, время непрерывно и свойство последействия сохраняется, то такой случайный процесс называется марковским процессом с непрерывным временем.

Марковский СП называется однородным, если переходные вероятности Image13340остаются постоянными в ходе процесса.

Цепь Маркова считается заданной, если заданы два условия:

1.               Имеется совокупность переходных вероятностей в виде матрицы:

Image13341. (2)

2.               Имеется вектор начальных вероятностей:

Image13342, ….. (3)

описывающий начальное состояние системы.

Матрица (2) называется переходной матрицей (матрицей перехода). Элементами матрицы являются вероятности перехода из i-го в j-е состояние за один шаг процесса. Переходная матрица (2) обладает следующими свойствами:

Image13343, (3a)

Image13344

Матрица, обладающая свойством (3a), называется стохастической. Кроме матричной формы модель марковской цепи может быть представлена в виде ориентированного взвешенного графа.

Вершины графа обозначают состояние Image13345, а дуги — переходные вероятности.

Множество состояний системы марковской цепи, определенным образом классифицируется с учетом дальнейшего поведения системы.

 

Яндекс цитирования Rambler's Top100

Главная

Тригенерация

Новости энергетики

Сочи-2014,новости спорта