Пользовательского поиска

Над этими понятиями бились Ньютон и Лейбниц, а также математики последующих поколений, превратившие дифференциальное и интегральное исчисления в математический анализ. Однако, несмотря на все усилия, в понятиях предела, непрерывности и дифференцируемости оставалось много неясного. Кроме того, выяснилось, что свойства алгебраических функций нельзя перенести на все другие функции. Почти все математики 18 в. и начала 19 в. предпринимали усилия, чтобы найти строгую основу для математического анализа, и все они потерпели неудачу. Наконец, в 1821, О. Коши (1789 – 1857), используя понятие числа, подвел строгую базу под весь математический анализ. Однако позднее математики обнаружили у Коши логические пробелы. Желаемая строгость была, наконец, достигнута в 1859 К. Вейерштрассом (1815 – 1897).

Вейерштрасс вначале считал свойства действительных и комплексных чисел самоочевидными. Позднее он, как и Г. Кантор (1845 – 1918) и Р. Дедекинд (1831 – 1916), осознал необходимость построения теории иррациональных чисел. Они дали корректное определение иррациональных чисел и установили их свойства, однако свойства рациональных чисел по-прежнему считали самоочевидными. Наконец, логическая структура теории действительных и комплексных чисел приобрела свой законченный вид в работах Дедекинда и Дж. Пеано (1858 – 1932). Создание оснований числовой системы позволило также решить проблемы обоснования алгебры.

Задача усиления строгости формулировок евклидовой геометрии была сравнительно простой и сводилась к перечислению определяемых терминов, уточнению определений, введению недостающих аксиом и восполнению пробелов в доказательствах. Эту задачу выполнил в 1899 Д. Гильберт (1862 – 1943). Почти в то же время были заложены и основы других геометрий. Гильберт сформулировал концепцию формальной аксиоматики. Одна из особенностей предложенного им подхода — трактовка неопределяемых терминов: под ними можно подразумевать любые объекты, удовлетворяющие аксиомам. Следствием этой особенности явилась возрастающая абстрактность современной математики. Евклидова и неевклидова геометрии описывают физическое пространство. Но в топологии, являющейся обобщением геометрии, неопределяемый термин "точка" может быть свободен от геометрических ассоциаций. Для тополога точкой может быть функция или последовательность чисел, равно как и что-нибудь другое. Абстрактное пространство представляет собой множество таких "точек"

 

Яндекс цитирования Rambler's Top100

Главная

Тригенерация

Новости энергетики

Сочи-2014,новости спорта