Пользовательского поиска

В 16 в. итальянские математики Н. Тарталья (1499 – 1577), С. Даль Ферро (1465 – 1526), Л. Феррари (1522 – 1565) и Д. Кардано (1501 – 1576) нашли общие решения уравнений третьей и четвертой степеней. Чтобы сделать алгебраические рассуждения и их запись более точными, было введено множество символов, в том числе "+", "–", "=", ">" и "<". Самым существенным новшеством стало систематическое использование французским математиком Ф. Виетом (1540 – 1603) букв для обозначения неизвестных и постоянных величин. Это нововведение позволило ему найти единый метод решения уравнений второй, третьей и четвертой степеней. Затем математики обратились к уравнениям, степени которых выше четвертой. Работая над этой проблемой, Кардано, Декарт и И. Ньютон (1643 – 1727) опубликовали (без доказательств) ряд результатов, касающихся числа и вида корней уравнения. Ньютон открыл соотношение между корнями и дискриминантом [b2 – 4ac] квадратного уравнения, а именно, что уравнение ax2 + bx + c = 0 имеет равные действительные, разные действительные или комплексно сопряженные корни в зависимости оттого, будет ли дискриминант b2 – 4ac равен нулю, больше или меньше нуля. В 1799 К. Фридрих Гаусс (1777 – 1855) доказал т. н. основную теорему алгебры: каждый многочлен n-й степени имеет ровно n корней.

Основная задача алгебры — поиск общего решения алгебраических уравнений — продолжала занимать математиков и в начале 19 в. Когда говорят об общем решении уравнения второй степени ax2 + bx + c = 0, имеют в виду, что каждый из двух его корней может быть выражен с помощью конечного числа операций сложения, вычитания, умножения, деления и извлечения корней, производимых над коэффициентами a, b и с. Молодой норвежский математик Н. Абель (1802 – 1829) доказал, что невозможно получить общее решение уравнения степени выше 4 с помощью конечного числа алгебраических операций. Однако существует много уравнений специального вида степени выше 4, допускающих такое решение. Накануне своей гибели на дуэли юный французский математик Э. Галуа (1811 – 1832) дал решающий ответ на вопрос о том, какие уравнения разрешимы в радикалах, т. е. корни каких уравнений можно выразить через их коэффициенты с помощью конечного числа алгебраических операций. В теории Галуа использовались подстановки или перестановки корней, и было введено понятие группы, которое нашло широкое применение во многих областях математики.

Развитие теории групп служит хорошим примером преемственности творческой работы в математике. Галуа построил свою теорию, опираясь на работу Абеля, Абель опирался на работу Ж. Лагранжа (1736 – 1813). В свою очередь многие выдающиеся математики, в том числе Гаусс и А. Лежандр (1752 – 1833) в своих работах неявно

Яндекс цитирования Rambler's Top100

Главная

Тригенерация

Новости энергетики

Сочи-2014,новости спорта