![]()
Пользовательского поиска
|
Континуумы, семиконтинуумы, дисконтинуумы
Теперь возвратимся к фигурам с трехмерной симметрией, но уже как к симметрическим пространствам — трехмерным дисконтинуумам, семиконтинуумам и континуумам.
Уже из философских положений:
· пространство и время — формы существования материи;
· движение — сущность пространства и времени;
·
существуют качественно различные, взаимно
превращающиеся виды материи и формы ее движения
— вытекают выводы о существовании качественно различных взаимно превращающихся
конкретных форм пространства и времени.
Данные о континуумах, семиконтинуумах и дисконтинуумах также подтверждают эти утверждения. Они с новой и очень своеобразной стороны выявляют связь симметрии с пространством и временем.
Очевидно кристаллы в отношении их атомов, ионов и молекул можно рассматривать как дискретные трехмерные пространства — дисконтинуумы.
Помимо дискретных — анизотропных и неоднородных — пространств в теории различают еще и дискретные в одних и непрерывные в других направлениях пространства — семиконтинуумы I и II рода. Семиконтинуумы, будучи явлениями переходными между континуумами и дисконтинуумами и одновременно их единством, с новых сторон выявляют диалектику пространства.
Пространственные (трехмерные) семиконтинуумы I рода могут быть получены трансляцией плоских континуумов вдоль перпендикуляра к ним. Число групп симметрии пространственных семиконтинуумов I рода бесконечно. Можно привести несколько примеров таких пространств в природе. Они проявляются, например, в так называемых смектических жидких кристаллах. Последние состоят из пленок толщиной в 1 – 2 молекулы, пленки лежат друг на друге, как листы в стопке бумаги, причем молекулы в них одной своей осью расположены параллельно друг другу, а двумя другими— нет. Другие примеры — поле стоячих ультразвуковых волн в жидкости, образованное сгущениями и разряжениями последней, а также однородное световое поле, которое можно рассматривать как семиконтинуум для плоских волн.
![]() |